Pruning Decision Trees and Lists

نویسنده

  • Ian Witten
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pruning Decision Trees and Lists

Machine learning algorithms are techniques that automatically build models describing the structure at the heart of a set of data. Ideally, such models can be used to predict properties of future data points and people can use them to analyze the domain from which the data originates. Decision trees and lists are potentially powerful predictors and embody an explicit representation of the struc...

متن کامل

A New Pruning Method for Solving Decision Trees and Game Trees

The main goal of this paper is to describe a new pruning method for solving decision trees and game trees. The pruning method for decision trees suggests a slight variant of decision trees that we call scenario trees. In scenario trees, we do not need a conditional probability for each edge emanating from a chance node. Instead, we require a joint probability for each path from the root node to...

متن کامل

Pruning Regression Trees with MDL

Pruning is a method for reducing the error and complexity of induced trees. There are several approaches to pruning decision trees, while regression trees have attracted less attention. We propose a method for pruning regression trees based on the sound foundations of the MDL principle. We develop coding schemes for various constructs and models in the leaves and empirically test the new method...

متن کامل

Scalable Bayesian Rule Lists

We present an algorithm for building rule lists that is two orders of magnitude faster than previous work. Rule list algorithms are competitors for decision tree algorithms. They are associative classifiers, in that they are built from pre-mined association rules. They have a logical structure that is a sequence of IF-THEN rules, identical to a decision list or one-sided decision tree. Instead ...

متن کامل

Study of Various Decision Tree Pruning Methods with their Empirical Comparison in WEKA

Classification is important problem in data mining. Given a data set, classifier generates meaningful description for each class. Decision trees are most effective and widely used classification methods. There are several algorithms for induction of decision trees. These trees are first induced and then prune subtrees with subsequent pruning phase to improve accuracy and prevent overfitting. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000